Green Energy and EVs are not a good plan.

      Batteries, they do not make electricity – they store electricity
  produced elsewhere, primarily by coal, uranium, natural gas-powered
  plants, or diesel-fueled generators.  So, to say an EV is a zero-
  emission vehicle is not at all valid.
      Also, since forty percent of the electricity generated in the
  U.S. is from coal-fired plants, it follows that forty percent of the
  EVs on the road are coal-powered, do you see?"
      Einstein's formula, E=MC2, tells us it takes the same amount of
  energy to move a five-thousand-pound gasoline-driven automobile a
  mile as it does an electric one. The only question again is what pro-
  duces the power? To reiterate, it does not come from the battery; the
  battery is only the storage device, like a gas tank in a car.
      There are two orders of batteries, rechargeable, and single-use.
  The most common single-use batteries are A, AA, AAA, C, D. 9V, and
  lantern types. Those dry-cell species use zinc, manganese, lithium,
  silver oxide, or zinc and carbon to store electricity chemically.
  Please note they all contain toxic, heavy metals.
      Rechargeable batteries only differ in their internal materials,
  usually lithium-ion, nickel-metal oxide, and nickel-cadmium. The
  United States uses three billion of these two battery types a year,
  and most are not recycled; they end up in landfills. California is
  the only state which requires all batteries be recycled. If you throw
  your small, used batteries in the trash, here is what happens to them.
      All batteries are self-discharging.  That means even when not in
  use, they leak tiny amounts of energy. You have likely ruined a
  flashlight or two from an old, ruptured battery. When a battery runs
  down and can no longer power a toy or light, you think of it as dead;
  well, it is not. It continues to leak small amounts of electricity.
  As the chemicals inside it run out, pressure builds inside the bat-
  tery's metal casing, and eventually, it cracks. The metals left in-
  side then ooze out. The ooze in your ruined flashlight is toxic, and
  so is the ooze that will inevitably leak from every battery in a
  landfill. All batteries eventually rupture; it just takes recharge-
  able batteries longer to end up in the landfill.
      In addition to dry cell batteries, there are also wet cell ones
  used in automobiles, boats, and motorcycles. The good thing about
  those is, ninety percent of them are recycled. Unfortunately, we do
  not yet know how to recycle single-use ones properly.
      But that is not half of it.  For those of you excited about elec-
  tric cars and a green revolution, I want you to take a closer look at
  batteries and also windmills and solar panels. These three technolo-
  gies share what we call environmentally destructive production costs. 
      A typical EV battery weighs one thousand pounds, about the size
  of a travel trunk.  It contains twenty-five pounds of lithium, sixty
  pounds of nickel, 44 pounds of manganese, 30 pounds cobalt, 200
  pounds of copper, and 400 pounds of aluminum, steel, and plastic.
  Inside are over 6,000 individual lithium-ion cells.
      It should concern you that all those toxic components come from
  mining. For instance, to manufacture each EV auto battery, you must
  process 25,000 pounds of brine for the lithium, 30,000 pounds of ore
  for the cobalt, 5,000 pounds of ore for the nickel, and 25,000 pounds
  of ore for copper. All told, you dig up 500,000 pounds of the earth's
  crust for just - one - battery."
      Sixty-eight percent of the world's cobalt, a significant part of
  a battery, comes from the Congo. Their mines have no pollution con-
  trols, and they employ children who die from handling this toxic ma-
  terial. Should we factor in these diseased kids as part of the cost
  of driving an electric car?"
      I'd like to leave you with these thoughts. California is building
  the largest battery in the world near San Francisco, and they intend
  to power it from solar panels and windmills. They claim this is the
  ultimate in being 'green,' but it is not.  This construction project
  is creating an environmental disaster.  Let me tell you why.
      The main problem with solar arrays is the chemicals needed to
  process silicate into the silicon used in the panels. To make pure
  enough silicon requires processing it with hydrochloric acid, sul-
  furic acid, nitric acid, hydrogen fluoride, trichloroethane, and
  acetone. In addition, they also need gallium, arsenide, copper-indium
  -gallium- di selenide, and cadmium-telluride, which also are highly
  toxic. Silicon dust is a hazard to the workers, and the panels cannot
  be recycled.
      Windmills are the ultimate in embedded costs and environmental
  destruction. Each weighs 1688 tons (the equivalent of 23 houses) and
  contains 1300 tons of concrete, 295 tons of steel, 48 tons of iron,
  24 tons of fiberglass, and the hard to extract rare earths neodymium,
  praseodymium, and dysprosium. Each blade weighs 81,000 pounds and
  will last 15 to 20 years, at which time it must be replaced. We can-
  not recycle used blades.
      There may be a place for these technologies, but you must look
  beyond the myth of zero emissions.  
      "Going Green" may sound like the Utopian ideal but when you look
  at the hidden and embedded costs realistically with an open mind,
  you can see that Going Green is more destructive to the Earth's en-
  vironment than meets the eye, for sure.
  Anonymous contributor.

      Electric vehicles are a danger to the environment well above
  that of a gas powered vehicle.
      Imagine getting into a serious accident and being pinned under
  a half ton of toxic chemicals.
      Please don't fall for this scam being forced on the people who 
  have trusted the corrupt media for years.
      We must pray that this mess is stopped and God will heal our
  land.

  Conservatively,
  John

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.